In Vitro Elution and Antibacterial Activity of Clindamycin, Amikacin, and Vancomycin from R-gel Polymer
Leslie A. Thomas¹, DVM, Tatiana Bizikova², MSc, and Anne C. Minihan¹, DVM, Diplomate ACVS
¹Chesapeake Veterinary Surgical Specialists, Annapolis, MD and ²Royer Animal Health, LLC, Frederick, MD

Corresponding Author
Dr. Leslie Thomas, DVM, 808 Bestgate Rd, Annapolis, MD 21401
E-mail: gatorvet05@gmail.com
Submitted February 2010
Accepted October 2010
DOI:10.1111/j.1532-950X.2011.00861.x

Objective: To characterize the in vitro elution and bioactivity of 2 formulations of antibiotics in a novel, dissolvable, cross-linked dextran polymer matrix: Formulation 1—amikacin and clindamycin (AC); Formulation 2—amikacin, clindamycin, and vancomycin (ACV).

Study Design: Prospective, in vitro, experimental study.

Methods: Aliquots of the antibiotic impregnated polymer were incubated in PBS buffer for 10 days. PBS was changed every 24 hours and concentrations of the antibiotics eluted into saline were quantified. Antimicrobial activity of the eluent from each sampling period was tested for growth inhibition of Staphylococcus aureus.

Results: Both formulations of R-gelTM had a rapid initial release of antibiotics within the first 24 hours and then the concentrations decreased gradually over 10 days. The concentration of amikacin, clindamycin, and vancomycin remained above the breakpoint minimum inhibitory concentration of each drug for a minimum of 9 days. No significant difference (P = .9938, P = .9843) was present in the elution pattern or total amount of antibiotic eluted from clindamycin or amikacin, respectively. Eluent from both groups demonstrated bioactivity against S. aureus for the entire 10-day study period.

Conclusions: Amikacin and clindamycin together, or in combination with vancomycin, elute from R-gelTM effectively and at gradually decreasing concentrations for at least 10 days. The antibiotics maintained their bioactivity following polymerization and elution from the R-gelTM.

The traditional approach to treating bacterial infections is administration of systemic antibiotic therapy based on culture and susceptibility results, preferably taking into account minimum inhibitory concentration (MIC) values. However, standard culture and susceptibility methods may not appropriately estimate the antimicrobial concentrations needed for deep, localized infections especially with bacterial adherence to metallic implants.¹² Local conditions such as biofilm production and bacterial adherence to metallic implants may lead to underestimation of the in vivo MIC values necessary for clinical resolution of infection.² Therefore local therapy is a useful adjunct or alternative to systemic antibiotic therapy as high local concentrations of antibiotic may be obtained with minimal risk of systemic toxicity.³⁴ Multiple methods have been devised to deliver antimicrobials directly to the source of the infection and previous studies have shown that using antibiotic impregnated implants can achieve antimicrobial tissue concentrations as much as 20 times the therapeutic level obtained in serum after systemic administration.⁵⁻⁶ The most familiar vehicle for local deposition is antibiotic impregnated polymethylmethacrylate cement (AIPMMA). AIPMMA is capable of significantly increasing local concentrations of antibiotics; however, its nonresorbable nature typically requires additional surgery for removal to avoid a foreign body reaction or bacterial colonization.⁷⁻⁸ Additionally, several human studies have demonstrated that polymethylmethacrylate (PMMA) may induce inflammatory and cellular immune responses and apoptosis of osteoblastic cells in vitro.⁹⁻¹¹ Whereas other forms of bioabsorbable polymers such as polylactide–glycolide, hydroxyapatite, collagen, and D-, L-lactic acid oligomer have been studied, lack of commercial availability and difficulty in preparation has limited clinical use.¹²⁻¹⁴ Research is needed to develop the ideal vehicle with the following characteristics: ability to be sterilized, stability in storage, biodegradable, biocompatible, and a consistent elution profile.

Royer Animal Health provided the materials and laboratory equipment for the study. Sample analysis performed by the laboratory at the Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine.
Presented in part at VOS conference in Breckenridge, CO, February 2010.

Veterinary Surgery 1–7 © Copyright 2011 by The American College of Veterinary Surgeons
LLC is currently being used as a matrix to deliver amikacin and clindamycin in both large and small animal medicine. The elution properties and characteristics of this delivery system must be defined to justify or refute this clinical practice. The gelation process of the matrix occurs over a 2-minute period after the addition of a dihydrazide cross-linking reagent to solution of oxidized dextran. The chemical reaction involved is the addition of the hydrazide nitrogen to an aldehyde carbon. This adduct dehydrates to form a hydrazone. The residence time of the gel in vivo is 4–5 weeks with degradation via hydrolysis. The R-gel™ vehicle has many clinical benefits including injectability allowing the gel to conform to the specific wound contour, lack of migration following gelation, fully resorbable delivery matrix, ease of clinical application, and lack of susceptibility to proteolytic degradation.

The R-gel™ product currently available contains a cumulative dose of 50 mg clindamycin HCl and 100 mg amikacin sulfate. Antibiotic combinations may demonstrate antagonism, additivity, or synergy when coeluting from a carrier vehicle. Addition of multiple antimicrobials to a polymer may affect the release kinetics, and therefore each combination of antibiotics must be tested individually to determine elution properties. A recent study of elution of a combination of amikacin and cefazolin from AIPMMA showed that combining these antibiotics resulted in a significantly shorter duration of elution than occurred with incorporation of the antibiotics separately.15 A separate study evaluating incorporation of liquid versus powder forms of amikacin within PMMA and hydroxyapatite cement (HAC) found that the powdered form demonstrated greater elution from PMMA.16 Therefore it is prudent to study the elution characteristic of each antibiotic combination and formulation in new drug delivery systems. The R-gel polymer matrix is commercially available in a pre-packaged, sterilized, kit as an animal device. Because of the classification as a device and not a drug, it has not undergone the rigorous kinetics testing for FDA drug approval.

Our first objective was to determine the elution properties of 2 formulations of antibiotics in a novel cross-linked dextran polymer matrix. Our second objective was to assess the in vitro bioactivity of the eluted antimicrobials against Staphylococcus aureus after entrapment and rerelease from the R-gel™.

MATERIALS AND METHODS

The commercially available form of R-gel™ is supplied in a 2-syringe kit (http://www.royerah.com Royer Animal Health LLC, Frederick, MD). The first syringe contains 2 mL oxidized dextran solution and the second contains a cross-linking reagent plus 50 mg clindamycin HCl (Chemwerth Inc., Woodbridge, CT) and 100 mg amikacin sulfate (Chemwerth Inc.) in powder form. The 2 syringes are connected and the contents are mixed via reciprocation for 15 cycles until the powder is completely dissolved within the gel for a total volume of 2.1 mL. For the purpose of this study a third syringe containing 50 mg vancomycin HCl (Tecolan Corporation, Edison, NJ) was added and mixed with the oxidized dextran solution via 15 reciprocation cycles before the addition of the syringe containing clindamycin, amikacin, and the cross-linking reagent. Therefore 2 sample groups were created. Group 1 contained amikacin and clindamycin (AC) and group 2 contained amikacin, clindamycin, and vancomycin (ACV).

The R-gel™ was prepared as described previously and four aliquots of 0.3 mL were pipetted into individual sterile 1.7 mL plastic tubes (WVR International, West Chester, PA) during the liquid phase to allow accuracy of measurement. Once the gelation process was complete the gel was covered with 1 mL sterile phosphate-buffered saline (PBS) with a pH of 7.4 (Spectrum Chemicals, New Brunswick, NJ) and the tubes were sealed with a plastic cap. The total amount of amikacin, clindamycin, and vancomycin contained within each aliquot was 150, 75, and 75 mg, respectively. The tubes were incubated in a 37°C water bath without agitation. The PBS was sampled every 24 hours for 10 days. The entire volume of PBS was removed at each sampling period and replaced with an additional 1 mL PBS. Samples were stored at 0–4°C until assayed. All samples were analyzed in triplicate by the clinical pharmacology laboratory at the Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine. The concentration of amikacin and vancomycin in the sample eluents was determined by the fluorescence polarization immunoassay (FPIA) (Tdx, Abbott Laboratories, Abbott Park, IL). The sensitivity range of this assay was 0.8–50 µg/mL for amikacin and 2–100 µg/mL for vancomycin. The assay was validated by adding various known concentrations of amikacin or vancomycin to PBS, to generate a standard curve. The concentration in each sample was determined by a plot of polarization versus the standard curve. If sample concentrations were above the sensitivity test range, standard dilution methods were used to determine concentrations.

Clindamycin concentrations were determined by reverse phase high-pressure liquid chromatography (HPLC; Agilent Technologies, Wilmington, DE). Calibration and blank samples were prepared and the calibration curves generated were linear with a r² value of 0.99 or higher. Limit of quantification for each of the clindamycin samples was 0.05 µg/mL, which was determined from the lowest point on a linear calibration curve that produced an appropriate signal-to-noise ratio. The upper limit of quantification for the clindamycin assay was 20 µg/mL. The test samples in PBS were diluted appropriately so that the concentrations fell within the upper and lower limits of the calibration curve. Control samples were diluted in an identical manner to ensure test accuracy and the coefficient of variability was < 15%. The laboratory used guidelines and standards published by the United States Pharmacopeia.17

The remaining elution aliquot from each sampling period was used for bioactivity studies. To determine the antimicrobial activity of the eluent, the PBS from each
sampling period was tested for growth inhibition of *S. aureus*. Tryptic soy agar plates were prepared by mixing 20 g of agar (DIFCO, Sparks, MD) with 500 mL of sterile water and boiled for one minute. The mixture was autoclaved for 30 minutes at a temperature of 200°F. The agar was then poured into twenty-five 100 mm diameter polystyrene plates (VWR International) and stored in a laminar flow hood (model VBM/-/400; The Baker Company, Sanford, ME) with an ultra-violet light for 12 hours. After preparation, the plates were stored in a laboratory refrigerator at 0–4°C until use.

The *S. aureus* culture was prepared from a Lyfocult® disk (ATCC 29213) dissolved in 20 mL sterile PBS. The culture of the *S. aureus* was applied to the tryptic soy agar plates with a sterile loop under the hood and incubated for one hour. Samples consisting of 5 μL of the eluent (undiluted and diluted 1:10) collected daily were placed on 6 mm diameter blank paper filter disks (BBL; Becton Dickinson Microbiology Systems, Cockeysville, MD). The higher concentration of antibiotics within the samples from the first 7 days, necessitated dilution by 1:10 to allow more precise measurement of the zone of inhibition. There were 3 disks per plate. Plates were incubated at 37°C for 24 hours and then the zones of inhibition were measured with a Vernier caliper. Three measurements were obtained from each disk and the average zone of inhibition was used for statistical analysis. Disks of known concentration of amikacin (30 μg), clindamycin (10 μg), and vancomycin (30 μg) were measured as controls.

The minimum inhibitory concentration (MIC) of the *S. aureus* isolate used is 0.1–1, 1, and 1–2 μg/mL for clindamycin, amikacin, and vancomycin, respectively. In considering the effectiveness of an antibiotic in elution, the MIC is a concentration specific to the organism cultured and the drug of interest, whereas the breakpoint MIC is specific to the host and the drug. For this reason, the breakpoint MIC of a drug is generally the same for any organism and is more applicable to broad statements of effective levels. The MIC breakpoints for amikacin, clindamycin, and vancomycin are ≤16, ≤0.5, ≤2 μg/mL, respectively.13

Concentrations of antibiotics at each sampling period were analyzed using a 1-way analysis of variance (ANOVA) for repeated measures for all treatment groups. Differences were considered significant at a *P* < .05. Data reported as mean ± SD.

RESULTS

Elution of Clindamycin and Amikacin

Both preparations of R-gelTM had a rapid initial release of clindamycin in the first 24 hours (3537 μg [AC], 3418 μg [ACV]). Clindamycin concentration in the eluent decreased dramatically during the 2nd day and continued to decrease gradually over 10 days (Fig 1). The mean cumulative elution of clindamycin after 10 days was 6521 μg (AC) and 6481 μg (ACV), which represented 86.4 ± .01% and 86.9 ± .02% of the total amount of clindamycin incorporated into the R-gelTM, respectively. ANOVA showed no significant difference in clindamycin concentration of the eluent with or without coelution of vancomycin, *P* = .9938. The concentration of clindamycin remained above the breakpoint MIC of clindamycin (0.5 μg/mL) for the entire 10 days in both samples.

Both preparations of R-gelTM had a rapid initial release of amikacin in the first 24 hours: (6040 μg [AC], 5450 μg [ACV]). Amikacin concentration in the eluent decreased dramatically during the second day and continued to decrease gradually over the 10 days (Fig 2). The mean cumulative elution of amikacin after 10 days was 10,945 μg (AC) and 11,110 μg (ACV), which represented 73.0 ± .007% and 74.0 ± .04% of the total amount of amikacin incorporated into the R-gelTM, respectively. ANOVA showed no significant difference in amikacin concentration of the eluent with or without incorporation of vancomycin, *P* = .9843. The concentration of amikacin remained above the breakpoint MIC of 16 μg/mL for 9 days in both samples, but fell below the breakpoint MIC for amikacin by day 10. The Cmax:MICbreakpoint of amikacin for Formulation 1 and Formulation 2 were 377.5 and 340.6, respectively.
Elution of Vancomycin

The ACV preparation had a rapid initial release of vancomycin in the first 24 hours (2462 mg). Vancomycin concentration in the eluent decreased dramatically during the 2nd day and continued to decrease gradually over the 10-day study period (Fig 3). The mean cumulative elution of vancomycin after 10 days was 6336 mg, which represented 84.5 ± .04% of the total amount of vancomycin incorporated into the R-gel™. The concentration of vancomycin remained above the breakpoint MIC for vancomycin of 2 μg/mL for the entire 10 days.

Antimicrobial Activity

The daily eluents from both ACV and AC groups demonstrated bioactivity against S. aureus (Table 1). Bioactivity in this study was defined as inhibition of growth of S. aureus culture in vitro on agar medium. Significant differences were not observed (P = .860) in the mean zone of inhibition in test solutions from AC and ACV. Bioactivity was still present on day 10. The effect of the individual antibiotics cannot be determined as they were not tested individually.

DISCUSSION

Our results indicate that amikacin, clindamycin, and vancomycin elute from R-gel™ polymer over a 10-day period. All 3 antibiotics had a high initial release followed by a steadily decreasing concentration curve. The average percentage release in the first 72 hours was 61.5% vancomycin, 64.8% clindamycin (ACV), 69.1% clindamycin (AC), 64.4% amikacin (ACV), 65.6% amikacin (AC). Copolymerization of amikacin and clindamycin with vancomycin did not have a significant effect on the elution profile.

Aminoglycosides remain the cornerstone of aerobic gram-negative therapy in many complicated or serious infections. Amikacin is a bactericidal aminoglycoside antibiotic that inhibits protein synthesis by irreversibly binding to both the 30S and 50S ribosomal subunit. Amikacin must be actively transported into bacterial cells, which is an
Staphylococcus, Bacteroides, Fusobacterium, Actinomyces, aerobic gram-positive cocci and anaerobic bacteria including...dosing interval. Coverage is provided against most drug concentration is maintained above the MIC through...

Clindamycin is a semisynthetic antibiotic that acts by binding to the 50S ribosomal subunit of susceptible bacteria, thereby inhibiting peptide bond formation. Clindamycin is a time-dependent drug and is most effective when the concentration on the mechanical strength of a construct. Biomechanical studies have suggested that < 10% of the weight

Table 1	Zone of Inhibition of Staphylococcus aureus as Measured via Vernier Calipers			
	Bioactivity Versus S. aureus	Zone of Inhibition (mm)	Dilution Factor	
	AC	ACV		
Day 1	9.33	9.8	0.10	
Day 2	9.0	8.0	0.10	
Day 3	6.7	7.2	0.10	
Day 4	6.8	7.7	0.10	
Day 5	3.8	4.2	0.10	
Day 6	3.4	3.2	0.10	
Day 7	1.0	2.5	0.10	
Day 8	5.8	6.5	Undiluted	
Day 9	3.7	4.4	Undiluted	
Day 10	1.2	2.7	Undiluted	

Eluents from each daily sample were plated and measured in triplicate. Average values are shown.

Table 2 | Pharmacodynamic Indices for Amikacin (A), Clindamycin (C), and Vancomycin (V) In Vitro Elution Samples from R-gel™ Polymer |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Treatment</td>
</tr>
<tr>
<td>Cmax (µg/mL)</td>
<td>A (AC)</td>
</tr>
<tr>
<td></td>
<td>A (ACV)</td>
</tr>
<tr>
<td></td>
<td>C (AC)</td>
</tr>
<tr>
<td></td>
<td>C (ACV)</td>
</tr>
<tr>
<td></td>
<td>V (ACV)</td>
</tr>
<tr>
<td>Cmax/MIC</td>
<td>A (AC)</td>
</tr>
<tr>
<td></td>
<td>A (ACV)</td>
</tr>
<tr>
<td>T > breakpoint MIC</td>
<td>C (AC)</td>
</tr>
<tr>
<td></td>
<td>C (ACV)</td>
</tr>
<tr>
<td></td>
<td>V (ACV)</td>
</tr>
</tbody>
</table>

*Cmax, maximum concentration reached; T > MIC, time concentration remained above breakpoint MIC; Cmax/MIC, ratio of maximum concentration to breakpoint MIC.

Results showing antagonism, no significant effect, or even synergism. A study evaluating clindamycin and aminoglycosides against 50 strains of S. aureus found synergistic effects at 24 and 48 hours.

An in vivo study in dogs comparing elution of antibiotics from AIPMMA found that pharmacologically, clindamycin was better at maintaining high concentrations in seroma fluid, granulation tissue and bone than cefazolin, ciprofloxacin, ticarcillin, tobramycin, or vancomycin. Previous studies have also shown that Clindamycin may reduce glycolalyc formation. These attributes of clindamycin make it an appropriate choice for incorporation into a delivery matrix.

Vancomycin was included in this study as it is frequently used to treat methicillin-resistant S. aureus (MRSA) infections in human medicine and applications of R-gel™ are also being studied as topical wound therapy for chronic, nonhealing wounds in people. Although MRSA is becoming a more prevalent issue in veterinary medicine, we are not advocating use of vancomycin in animals if alternative treatments are available. There is currently no formulation of vancomycin that is approved for veterinary use. Use of vancomycin also raises concerns of increasing infection or colonization of vancomycin-resistant enterococci which has been reported in a variety of species. Vancomycin appears to have some synergistic activity when combined with aminoglycosides, however the combination may increase the risk of aminoglycoside-related nephrotoxicity.

The amount and duration of elution of an antibiotic from different materials is affected by several factors. These include the type or combination of antibiotics, properties of the material, surface area, concentration of the antibiotic, and method of elution. It would have been ideal to study elution of each antibiotic separately before performing this coelution study, however, this was not possible as the gel is provided and marketed by the manufacturer in these specific combinations. Incorporation of antibiotics into other vehicles such as PMMA has often required evaluation of the effect of the antibiotic concentration on the mechanical strength of a construct. Biomechanical studies have suggested that < 10% of the weight.
of AIPMMA should be attributable to the antibiotic component if the cement is to be used for implant fixation. Since R-gel™ is a completely biodegradable device not intended to impart stability to any construct, the dosage of antibiotics may be increased without jeopardizing surgical results.

A potential concern with use of an absorbable delivery matrix is that changes in the surface area of absorbable materials can have an effect on the elution profile. Intuitively this effect should be minimal as it should not affect the total concentration released and the effect of surface area on elution should be of greater concern in nonresorbable materials. The surface area of the R-gel™ is inconsistent as it is designed to conform to the wound bed during application. This may have an effect on the in vivo elution during clinical application. Another potential flaw with this study is that the R-gel™ was not agitated during the study period. This likely led to drug elution from the matrix based on passive diffusion and may have inadvertently decreased the rate of elution. Further studies are necessary to determine pharmacodynamic indices for the delivery matrix in vivo.

The antibiotic concentration currently incorporated was arbitrary and based on published single dose parenteral recommendations for a 4–5 kg patient. Clinically, over dosage or toxicity should not occur even if complete elution of the antibiotics takes place immediately since the total antibiotic content is equivalent to the systemic dose typically administered to a 5 kg dog. Further studies of different dosing regimens are necessary to determine the optimal antibiotic concentration for clinical efficacy.

A potential advantage of the R-gel™ matrix over AIPMMA is that the gelation reaction is not exothermic in nature. The increased temperature during the mixing of AIPMMA can decrease the effectiveness of some antibiotics and limits therapeutic choices to antibiotics that are sufficiently heat stable. The R-gel™ matrix also has the advantage of being implanted immediately following recirculation within the syringes without additional surgical time for polymerization and cooling.

S. aureus was selected for microbiology testing as it is the most frequent bacterium isolated from lesions of osteomyelitis in the dog and has been used by previous elution studies. The eluent from both formulations in our study was supplied by Royer Animal Health. The authors have no financial interest in this product and received no royalties or payments. The product and laboratory facility was supplied by Royer Animal Health.

ACKNOWLEDGMENTS

The authors have no financial interest in this product and received no royalties or payments. The product and laboratory facility was supplied by Royer Animal Health.

Disclosure: Ms. Bizikova is an employee of Royer Animal Health.

REFERENCES

